##plugins.themes.bootstrap3.article.main##
Анотація
The yttrium (III)-rutin (Rut) complex in the presence of bovine serum albumin (BSA) is suggested as a luminescent sensor to determine tartrate ions (Tart). It has been experimentally established that tartrate ions reduce the luminescence intensity (Ilum) of the Y(III)-Rut complex in the presence of BSA and Tart. The spectral and luminescent properties of the Y(III)-Rut complex in the presence of BSA have been studied. The peak of the luminescence spectrum of the Y(III)-Rut complex in the presence of BSA is at λ=570 nm. In the presence of potassium tartrate, Ilum of the Y(III)-Rut complex decreases, and the maximum luminescence shifts to the longwave region of the spectrum (λ=590 nm). It is known that the luminescence decay can be caused by various processes, including reactions in the excited state, energy transfer, formation of complexes, and collisional decay. It can be assumed that the decay effect of the Y(III)-Rut complex is due to the complexation reaction of Y(III) with Tart, that leads to the destruction of the Y(III)-Rut complex. The luminescence decay of the Y(III)-Rut complex in the presence of BSA by means of Tart follows the Stern-Volmer relationship. The Stern-Volmer constant K is 1230 l/mol. The method of luminescent determination of tartrate ions in mineral table waters has been developed. It is based on using the decay of rutin’s molecular luminescence in the Y(III)-rutin complex in the presence of BSA. The linear calibration plot for tartrate ions has been obtained over the range of Tart concentrations of 0.02 to 0.20 mg/ml. The limit of determining potassium tartrate is 0.01 mg/ml. The technique has an advantage over the existing ones due to the absence of toxic reagents, and short-time analysis. Besides, it allows rapid screening of samples of mineral table water.
##plugins.themes.bootstrap3.article.details##
Посилання
2. Pohloudek – Fabini RTh. Beyrich Th. Organische analyse. Leipzig: Academische verlagsgesellschaft; 1975.
3. Sur BK, Pandey HN, Deshpande S, Pahwa R, Singh EK. Tarachandra Future of tamarind and tartrate in preventing recurrence of renal calculi. Urolithiasis: clinical and basic research. New York: PlenumPress; 1981.
4. Halison PC, Rose GA. The additive effects of magnesium and tartrate upon inhibition of calcium oxalate crystal formation in whole urine. Urolithiasis and related clinical research. New York: Plenum Press; 1985.
5. Paustovs'ka A, Sushko V, Bojko G, Zіn'ko L, Zaporozhec' O. Metody molekulyarnoj spektroskopii dlya opredeleniya oksalatov i tartratov. Vіsnik KNU іm. Tarasa SHevchenka. Hіmіya. 2014; 50(1): 13-17.
6. LaCount M, Handy G, Lebioda L. Structural origins of L(+)-tartrate inhibition of human prostatic acid phosphatase J. Biol. Chem. 1998; 273(46): 30406–30409.
7. Basavaiah K, Somashekar B. Titrimetric and Spectrophotometric Determination of Metaprolol tartrate in Pharmaceuticals Using N-Bromosuccinimide. E-Journal of Chemistry. 2007; 4(1): 117–127. DOI: 10.1155/2007/739141
8. Badulescu M, Balalau D, Cacovean D. UV-VIS spectrophotometric assay of metoprolol. Farmacia. 2008; 56: 4.
9. Vujic Z, Radulovic D, Agbaba D. Densitometric determination of metoprolol tartrate in pharmaceutical dosage forms. Journal of Pharmaceutical and Biomedical Analysis. 1997; 15(5): 581–585.
10. Deshpande G. R., Rao B. M., Someswararao N. Quantitative determination of tartaric acid in tolterodine tartrate by ion chromatography using conductivity detection. Rasayan J. Chem. 2009; 2(1): 101−107.
11. Serebrennikov V.V. Himiya redkozemelnyih elementov. Tomsk: TGU; 1961.
12. Brunet E, Juanes O, Rodriguez-Ubis JC. Supramolecularly Organized Lanthanide Complexes for Efficient Metal Excitation and Luminescence as Sensors in Organic and Biological Applications. Current Chem. Biol. 2007; 1: 11-39. DOI: 10.2174/2212796810701010011
13. Leonard JP, Gunnlaugsson T. Luminescent Eu(III) and Tb(III) Complexes: Developing Lanthanide Luminescent-Based Device. J. Fluorescence. 2005; 15(4): 585-595. DOI: 10.1007/s10895-005-2831-9
14. Bunzli J. Lanthanide Luminescence for Biomedical Analyses and Imaging. Chem. Rev. 2010; 110: 2729-2755. DOI: 10.1021/cr900362e
15. Yu J, Parker D. Synthesis of a europium complex for anion-sensing involving regioselective substitution of cyclen. Eur. J. Org. Chem. 2005; 20: 4249-4252. https://doi.org/10.1002/ejoc.200500432
16. Beltykova S, Bychkova А. Sorption-luminescent determination of antioxidants as the indicator of quality of vegetative raw materials. «First International Conference on Luminescence of Lanthanides (ICLL-1)». Odessa: 2010; 81.
17. Beltyukova SV, CHerednichenko ЄV, Teslyuk OІ. Viznachennya sumi flavonoїdіv u hmelі (Humulus L.) іz vikoristannyam lyumіnescentnogo sensora na osnovі kompleksu rutinu z іtrієm (III). Farmacevtichnij zhurnal. 2016; 3-4: 82-86.
18. Leonenko II, Aleksandrova DI, Egorova AV, Antonovich VP. Analiticheskoe primenenie ehffektov tusheniya lyuminescencii. Metody i ob"ekty himicheskogo analiza. 2012; 7(3): 108-125.
19. Pastorek R. Yttriumtartrate im neutralen und alkalischen Bereich. Monatshefte für Chemie. Chemical Monthly. 1968; 99(4): 1551–1559.
20. Pastorek R, Březina F, Rosický J. Yttriumtartrat komplexe im sauren Bereich. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften. 1966; 97(2): 452–459.