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Flows with minimal number of
singularities on the Boy’s surface

Alexandr Prishlyak, Luca Di Beo

Abstract. We study flows on the Boy’s surface. The Boy’s surface is the
image of the projective plane under a certain immersion into the three-
dimensional Euclidean space. It has a natural stratification consisting of
one 0-dimensional stratum (central point), three 1-dimensional strata (loops
starting at this point), and four 2-dimensional strata (three of them are disks
lying on the same plane as the 1-dimensional strata, and having the loops as
boundaries). We found all 342 optimal Morse-Smale flows and all 80 optimal
projective Morse-Smale flows on the Boy’s surface.

Анотація. Розглядаються потоки на поверхні Боя. Поверхня Боя є зану-
ренням проективної площини в тривимірний евклідів простір. Вона має
природну стратифікацію, що складається з одного 0-вимірного страту
(центральна точка), трьох одновимврних стратів (петель з початком в
цій точці) і чотирьох двовимірних стратів (три з них є дисками, що ле-
жать в одній площині з одновимірними стратами та мають ці петлі як
свої межі). Спочатку досліджуються потоки без замкнених траекторій
та з однією особливою точкою, що є 0-стратом. Показано, що у такого
потоку є принамні одна сепаратриса. Доведено, що існує 18 різних стру-
ктур потоків з однією сепаратрисою. Далі розглядаються потоки Морса-
Смейла на поверхні Боя як на стратифікованій множині без врахування
її вкладення в тривимірний простір. Доведено, що на кожному 1-страті
існує сингулярна точка. Описано всі можливі (342) структури потоків, у
яких 4 особливі точки (0-страт і по одній на кожному 1-страті). В кінці
роботи розглядаються потоки Морса-Смейла на проективній площині,
які проектуються в потоки на поверхні Боя. Такі потоки з найменшим
числом особливостей мають 3 витоки, 3 стоки та 5 сідел. Описані всі мо-
жливі 80 строуктур потоків з таким набором особливостей.
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INTRODUCTiON
The Boy’s surface is a certain immersion of the real projective plane in

the three-dimensional space. It was found by Werner Boy in [2](1901). The
famous mathematician David Hilbert made an assignment to Boy to prove
that RP 2 could not be immersed in the 3D Euclidean space. As seen, it
turned out to be possible, and this way the Boy’s surface was discovered.

The first explicit parameterization of the Boy’s surface was achieved by
Bernard Morin in [11](1978), in which it was used to describe the sphere
eversion. Another parameterization was discovered by Rob Kusner and
Robert Bryant in [7](1987).

In [4](2009), Sue Goodman and Marek Kossowski showed that the Boy’s
surface is one of the only two possible immersions of the real projective plane
with a single triple point. The advantage of the Boy’s surface with respect
to the Roman surface, and the cross-cap, is that it has no singularities other
than self-intersections, i.e. it has no pinch-points.

We consider the Boy’s surface as a stratified set. Morse theory is often
used to study the topological properties of such sets and manifolds. The
main constructions in it are made with the help of gradient vector fields (or
flow) of Morse functions. In general position, such vector fields are Morse-
Smale vector fields without closed trajectories. As the fewer singularities
such vector fields have, then all constructions are simpler. Therefore, it is
typical to study the structures of such vector fields with a minimum number
of singularities.

The initial developments of the theory go back to [1](1937), when the
physicist and mathematician A. Andronov and L. Pontryagin, respectively,
considered the system ẋ = v(x), where v is a C1-vector field on the plane.
They suggested calling it rough if for any sufficiently small perturbation
in the C1-metric, there exists a homeomorphism in the neighborhood of
the identity map, which sends orbits of the original system to orbits of the
perturbed system. They also established a criteria for roughness, which is a
finite number of singular points and periodic orbits, all of which hyperbolic,
and no saddle connections.

One of the goals was to generalize the results. In the case of generalizing
them to arbitrary oriented surfaces of positive genus, the problem was the
appearance of non-closed recurrent trajectories. However, in [10](1939)
A. Mayer proved that such trajectories do not exist in structurally stable
flows without singularities on the 2-torus.

The topological classification of structural stable flows on a bounded part
of the plane, and on the 2-spheres, were accomplished only in [8](1955) by
E. Leontovich-Andronova and A. Mayer.
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In [14](1959), M. Peixoto generalized the concept of roughness by the
introduction of the notion of structural stability. A flow f t is called struc-
turally stable if, for any sufficiently close flow gt, there exists a homeomor-
phism h sending orbits of the system gt to orbits of the system f t. Hence,
the requirement of a homeomorphism in the neighborhood of the identity
map (as in the definition of rough system) is relaxed for structurally stable
systems.

In [15](1962), M. Peixoto showed that the concepts of structural stability
and roughness are equivalent for 2D flows. As a consequence of the genera-
lization of properties of rough flows to orientable surfaces, there arises the
concept of Morse-Smale systems. In such systems, the non-wandering set
consists of finitely many singular points and periodic orbits, each of which
is hyperbolic, and the stable and unstable manifolds intersect transversely
for any distinct non-wandering points.

Morse-Smale systems received this name after the paper, written by
S. Smale, in [27](1960). He presented flows with the corresponding pro-
perties on manifolds of dimension greater than 2, and showed that they
satisfy inequalities similar to the Morse inequalities, regarding the critical
points of a manifold. Only in [13](1979), J. Palis and S. Smale proved that
Morse-Smale systems are structurally stable.

In [16](1973) M. Peixoto, and in [12](1998) A. Oshemkov and V. Sharko,
and others, achieved a structural classification of Morse-Smale vector fields
on closed surfaces.

A Morse-Smale flow without closed orbit is called a Morse flow. We say
that flow is optimal if it has the lowest number of fixed points among all
flow of that type on the surface.

The Morse flow on the closed surface is optimal if and only if it has only
one sink and one source, according to Z. Kibalko, A. Prishlyak, R. Shchurko
in [6](2018). Such a flow is also called a polar Morse flow. The topological
structure of polar (optimal) Morse flows on closed 2- and 3-manifolds was
described in [3, 5, 6, 9, 17,18,21].

Morse-Smale flows with singularities on a surface with a boundary was
investigated in [20,22–26].

The formula for the sum of singularities indices is useful for calculating
their number for flow on a stratified set [19].

In this paper we unit these two important concepts in mathematics
(Boy’s surface and Morse-Smale systems) that have being developed since
the beginning of the XX century. One of the goals here is to describe topo-
logical structures of flows with minimum number of singular trajectories.

Structure of the paper. This paper contains results concerning flows
applied to the Boy’s surface with minimal number of singularities.
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Section 1 contains topological properties of flows on the Boy’s surface.
We show that 1-strata are invariant with respect to all flows and the 0-
stratum is a singular point for every flow on Boy’s surface (Lemma 1.1).
It was proved that there is at least one separatrix of a flow with the only
one fixed point, and there are 18 different structures of such flows with one
separatrix (Theorem 1.2).

Section 2 possesses definitions of such flows in a manifold with boundary
and in a stratified space. We define Morse-Smale flows in general (Defini-
tion 2.1) and on stratified spaces (Definition 2.2), the concept of separatrix
in this context (Definition 2.3) and of optimal Morse-Smale (MS-) flows (De-
finition 2.4). We also prove the following three theorems: (Theorem 2.5)
optimal Morse-Smale flows in the Boy’s surface do not have closed orbits;
(Theorem 2.6) each 1-strata of MS-flows contains at least one fixed point of
the flow; (Theorem 2.7) there are 342 topologically nonequivalent optimal
MS-flows in the Boy’s surface.

Section 3 considers projective MS-flow (PMS-flow), i.e. Morse-Smale flows
on the real projective plane, which are flows projected on the Boy’s surface.
We prove Theorem 3.1 that states that there exist 80 optimal PMS-flows in
the projective plane, with 3 sources, 5 saddles, and 3 sinks.

1. SiNGLE FiXED POiNT FLOWS
Let us describe some topological properties of the Boy’s surface. The

Figure 1.1 is the so-called fundamental (curved) polygon of the Boy’s sur-
face [2]. In order to show that, the following two remarks are helpful:

FiGURE 1.1. Boy’s surface as the immersion of the projective plane

(1) opposite sides of the fundamental polygon must be attached in opposite
directions in order to capture the non-orientability of the projective
plane;

(2) the loops must be attached to the sides, satisfying the orientation shown
on the Figure 1.1 left, in order to result in Figure 1.1 right.
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Consider the Boy’s surface (Figure 1.1 right), which is the immersion of
the projective plane in three-dimensional space, and cut it by its 3 loops in
order to obtain 4 disks. The loops are the 1-strata, and the disks are the
2-strata.

Since the triple point (0-stratum) is unique, when cutting the 3 loops, 6
copies of the same point are generated (one in each loop and one in each
boundary connecting loops – red points in Figure 1.1 left). The corners are
the result of the non-smoothness at the triple point, for it is characterized
as the intersection of three surfaces. This explains how the proper surgeries
performed in the space in Figure 1.1 right yields Figure 1.1 left.

Let us describe the topological properties of flows on Boy’s surface.

Lemma 1.1. On the Boy’s surface, if a trajectory passes through a point
of a 1-stratum, then it belongs to this stratum. Moreover, its 0-stratum is
a singular point of every flow.
Proof. Concerning the 1-strata: suppose there are two non-parallel sur-
faces intersecting along a line, such that in each of them there is a smooth
vector field at each point. Figure 1.2 illustrates a simple case, when these
surfaces are planes. Each vector belongs to the tangent space at the point
on the surface. Hence, for every point on the line of intersection of the
surfaces, the vector at this point must be simultaneously tangent to both
surfaces. The only way for it to happen is if the tangent vectors at points
on the line are tangent to the line itself. This is illustrated in Figure 1.2,
where all (red) vectors at points on the red line (1-stratum) are tangent to
the red line. This way, the system generates a flow that is invariant in each
1-stratum (see Figure 1.2).

FiGURE 1.2. Vector along the red line of intersection is tan-
gent to the line itself

Now, let’s consider the proof about the 0-stratum. As the vector field
on the Boy’s surface is assumed to be smooth, each of its vectors belong
to the tangent space at a point. When such point is a 0-stratum (point
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of intersection of 3 surfaces), the vector at this point must be tangent to
all 3 surfaces simultaneously, which is possible only when this is a zero
vector. Therefore, the vector at the 0-stratum is zero for every flow, and
consequently the point is singular. In order to visualize it, make a third
surface intersecting the two planes in Figure 1.2, crossing the red line. This
triple intersection point is the singular 0-stratum point. □

Consider flows with one fixed point being the 0-stratum. It is easy to
see that the α- and ω-limit set of each trajectory is the 0-stratum. If this
is not so, then, according to the Poincare-Bendixson theorem, there must
exist a closed cycle and a second fixed point inside it.

The 1-stratas and the separatrices divide the surface into regions, which
we will call cells. Each cell is a curved polygon, the vertices of which are
fixed points. Since there are no fixed points inside the cell, each trajectory
starts and ends at one of the vertices. There are 4 types of vertex angles:
elliptic, hyperbolic, sources, sinks.

‚ In a neighborhood of the elliptic point, the vector field is topologically
equivalent to the vector field tx3 ´ 3xy2, 3x2y ´ y3u, x ě 0, y ě 0;

‚ in the neighborhood of the hyperbolic point it is equivalent to to the
vector field tx,´yu, x ě 0, y ě 0;

‚ near the source to tx, yu, x ě 0, y ě 0;
‚ and near the sink to t´x,´yu, x ě 0, y ě 0.

Also note that all cells are of two types:

‚ one of the corners is a source, another corner is a sink, and the rest are
hyperbolic (polar cell);

‚ one of the angles is elliptic, and the rest are hyperbolic (cyclic cell).

In a polar cell, trajectories start and end at distinct points, whilst in a
cyclic cell, the trajectories start and end at the same point. The boundary
of the cyclic cell forms a cycle, and the polar one forms two oriented paths
that start at the source and end at the sink. Of course, for MS-flows elliptic
vertex angles is not allowed, and thus these flows only have polar cells.

Theorem 1.2. A flow with one fixed point has at least one separatrix.
There are 18 different structures of such flows with one separatrix.
Proof. Note that two types of flows are possible:

a) motion along 1 and 0-strata is possible, which defines a regular curve
that coincides with the direction of flow on 1-strata (oriented flow),

b) such motion does not exist (non-oriented flow).
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Let us enumerate the angles of the central region counterclockwise start-
ing from the angle between the loops with integers from 1 to 9 (see Fi-
gure 1.3).

1

2

3

4

5 6

7

8

9

1

2

3

4

5 6

7

8

9

a) b)

FiGURE 1.3. Oriented (left) and non-oriented (right) flows
with one fixed point

In case a) the arcs will be oriented as follows:
1 Ñ 2, 3 Ñ 2, 3 Ñ 4, 4 Ñ 5, 6 Ñ 5, 6 Ñ 7, 7 Ñ 8, 9 Ñ 8, 9 Ñ 1.

In case b) we have the following orientations of the arcs:
1 Ñ 2, 3 Ñ 2, 4 Ñ 3, 4 Ñ 5, 5 Ñ 6, 6 Ñ 7, 8 Ñ 7, 9 Ñ 8, 9 Ñ 1.

In case a) we have three angles that are potential sources (p-source): 3, 6,
9 and three angles that are potential sinks (p-sink): 2, 5, 8. If a separatrix
enters the potential source, then it turns into a saddle.

Similarly, if a separatrix starts from the potential sink, then it also turns
into a saddle.

In other cases, they remain sources and sinks, respectively. Note that
the separatrix cannot start in the source and go to the sink, since in this
case it will be a regular curve.

Let us consider case a) in detail. Suppose there is a separatrix connecting
two potential sinks, for example, 2 and 5. Then it splits the region into
two parts in one of which there will be two potential sinks 6 and 9, which
means there is a another separatrix that connects them or a separatrix that
separates them into different area.

Thus, in this case there are at least two separatrices. Similarly, if there
is a separatrix that connect to sources, then there exist an other separatrix.

Now consider the case of separatrix, that starts in a p-sink and go to a
p-source. If this points are opposite (3 and 8, 2 and 6, or 5 and 9) then
we obtain to polar regions. So the structure of the flow is determined by
the separatrix. If the separatrix connect not opposite p-sink and p-source,
then one of region contain two p-sink and two p-source and there is other
separatrix in it.
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In case b) we have two p-sources (4 and 9) and two p-sinks (2 and 7). In
this case one separatrix is sufficient, which is given by one of the following
8 options:

1) 4 Ñ 9,
2) 9 Ñ 4,

3) 2 Ñ 7,
4) 7 Ñ 2,

5) 2 Ñ 4,
6) 7 Ñ 4,

7) 2 Ñ 9,
8) 7 Ñ 9.

In cases 1)-4) both of cells are polar, so there is by one flow structure
in each of this cases. In case 5) there is the cyclic cell 4-3-2 and three
possibility for elliptic angle (4, 3 or 2). By analogy, there are by three flow
structure in cases 6) and 7). In case 6) we have cyclic cell 4-5-6-7 and 4
flow structures. Thus, the total number of one separatrix flow structures is
18 = 1(a) + 1(b1) + 1(b2) + 1(b3) + 1(b4) + 3(b5) + 4(b6) + 3(b7) + 3(b8).

Theorem is completed. □

2. MORSE-SMALE FLOWS
Definition 2.1. A flow X on a manifold with boundary BM is called a
MorseSmale flow if it satisfies the following conditions:
(1) the set of non-wandering points Ω(M) consists of finitely many of points

and closed orbits and all of them are hyperbolic;
(2) if u, v P Ω(X), then the unstable manifold W u(u) is transverse to the

stable manifold W s(v) in IntM ;
(3) the restriction of X to BM is a Morse-Smale flow (the stable and

unstable manifolds have a transversal intersection) and if S(u) does
not transverse U(v) in M , then u or v is singular point.

We generalize this definition to 2-dimensional stratified spaces:

Definition 2.2. msflow F on a stratified space is a flow satisfying the
following conditions:
(1) F has finitely many critical elements (fixed points and closed orbits)

and all of them are non-degenerated (if a point belongs to a 0- or 1-
strata then the restriction of flow to any 2-strata in the neighborhood of
critical point can be extended to flow on a 2-disk with a source, saddle
or sink),

(2) there are no saddle connections,
(3) α- (as well as ω-) limit set of every trajectory is a critical element.

So each angle in a 0-strata is hyperbolic, sink or source.
The structure optimal MS-flows has the minimal number of critical ele-

ments, among all MS-flows.
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Definition 2.3. A separatrix, in the context of Morse-Smale dynamical sys-
tems, is a trajectory connecting either a saddle to a sink, or a source to a
saddle and belonging to a 2-strata.

Connections between saddles, or between a sink and a source, are for-
bidden in Morse-Smale systems.

Definition 2.4. A MS-flow is optimal if the numbers of singular pointsand
closed orbits are minimal among all MS-flows.

Theorem 2.5. Optimal MS-flows on the Boy’s surface do not have closed
orbits.
Proof. For an optimal MS-flow on the Boy’s surface, all singular points
belong to the boundary, as in the example of Figure 2.1 left. In fact,
this figure shows a MS-flow with 4 singular points: one of them is the 0-
stratum and one on each 1-strata. Since the definition of optimal MS-flow
includes the requirement of having minimal number of singular points, then
an optimal MS-flow cannot have more than 4 singular points. Therefore,
a system with 5 singular points (4 in the boundary and 1 in the largest
2-stratum, for example) is not optimal. Using this fact, we will prove the
theorem by contradiction.

Suppose that there exists a closed orbit on the Boy’s surface. By de-
finition of an MS-flow this must be a hyperbolic cycle. It follows from
the Brouwer’s fixed point theorem that there exists at least one singular
point in the interior of the compact region formed by this cycle. But then
this singular point belongs to a 2-stratum, which adds up to 5 singular
points on the whole Boy’s surface (see Figure 2.1 right). This contradicts
the requirement that an optimal MS-flow cannot have more than 4 singu-
lar points. Hence, there are no optimal Morse-Smale systems with closed
orbits (hyperbolic cycles) on the Boy’s surface. □

FiGURE 2.1. Optimal and non-optimal MS-flows
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Theorem 2.6. Each 1-strata of MS-flows contains at least one fixed point
of the flow.
Proof. We will prove it by contradiction. Suppose that the orientation in
the boundary of the curved polygon in Figure 2.1 is changed such that the
flow leaves point 11, go around the loop, and end at 9, i.e. the point 10 is
regular. Then the flow goes from 9 to 8 and from 12 to 11, or vice-versa.
In each case, the regular point 9/11 and the point 1 are identified together.
This implies that if 10 is a regular point, then 1 must be regular as well.
This is a contradiction for 1 is a 0-stratum, and thus it is a singular point.
Therefore, in every loop there is at least one singular point (sink, source or
saddle). □

Theorem 2.7. Each MS-flow on the Boy’s surface has at least 4 singular
points: one of them is 0-strata and one on each 1-strata. Thus, every
optimal MS-flow has 4 singular points. Among these flows, there are 2
topologically non-equivalent ones with 8 separatrices (0-strata is a source
for all adjacent angles) and 169 flows with 5 separatrices (0-strata is a
source for 5 adjacent angles and a sink for one angle). Out of these 169
flows, 3 flows have 0 red separatrices, 54 flows have 1 red separatrix, 92
flows have 2 red separatrices, and 20 flows have 3 red separatrices. Each
flow with 4 singular points is topologically equivalent to one of these flows or
its opposite. Thus, there are 2ˆ (2+169) = 342 topologically nonequivalent
optimal MS-flows.
Proof. By analogy with flows on closed surfaces, MS-flows on the Boy’s
surface are defined by the separatrix diagram. Let us first consider the
case when the 0-stratum is the source for all adjoining angles (Figure 2.2
left). Since singular points lying on 1-strata have two trajectories entering
them along the 1-stratum, they cannot form a red saddle with an incoming
separatrix. Thus, in our case, the flow does not have red separatrices. Let
us prove that such a flow has a unique sink. Suppose there are 2 sources.
Then, after cutting the fundamental region along the green separatrices, due
to its connectivity, a region will be formed that has 2 sinks on the boundary.
Then they must be separated by a red separatrix, which is impossible. The
resulting contradiction proves the existence of a unique sink. There are two
different possibilities for choosing such a point – these are points 2 and 4.
Flows with sinks at points 5, 8, 12, 14 and 18 are obtained from a flow with
sink at 2 by symmetries and rotations of the pattern by 2π/3. So there are
2 topologically non-equivalent flows in this case, (Figures 2.3-1 and 2.3-2)

Let us now consider flows with directed trajectories on 1-strata shown
in Figure 2.2 right. Since there are only 3 red points (6, 10 and 14) on
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FiGURE 2.2. Possible orientations of optimal MS-flows in the boundary

1-strata, only they can be saddles of red separatrices. Thus, the number of
red separatrices does not exceed 3.

We begin our consideration of such flows with flows without red sepa-
ratrices (Figure 2.3-11). In this case, considering the arguments as above,
there is only one sink. It can be one of points 2, 4 or 8. The remaining 3
points (12, 16, 18) give symmetrical flows with respect to the first 3. Hence,
there are 3 topologically non-equivalent flows without red separatrices.

Consider now the case of one red separatrix. It can end at the saddle 6
or 10 (case 14 is symmetrical to 6). Let the separatrix end at 6. If at the
same time it starts at 3 (3 Ñ 6, see Figure 2.3-5), then 4 is a sink, and in
another area into which it divides the diagram, the remaining green points
can be sinks: 2, 8, 12, 16, 18. So there are 5 different threads in this case.

If the separatrix starts at 1 (1 Ñ 6, Figure 2.3-3), it divides the area into
two parts with two (2, 4) and four (8, 12, 16, 18) points that can be sinks,
thus 2 ˆ 4 = 8 options in total. In case 17 Ñ 6 (Figure 2.3-7), we have
3 ˆ 3 = 9 options, 14 Ñ 6 (Figure 2.3-4) gives 4 ˆ 2 = 8 options, and case
10 Ñ 6 (Figure 2.3-6) gives 5 ˆ 1 = 5 options.

If the red separatrix ends at 10, then possible axial symmetries of the
diagrams must be taken into account. Thus, for example, all options with
6 Ñ 10 are symmetrical to the corresponding options with 14 Ñ 10. There-
fore, we will consider only one of them. For 14 Ñ 10 (Figure 2.3-8) we have
1ˆ5 = 5 options, for 17 Ñ 10 (Figure 2.3-9) we have 2ˆ4 = 8 options, and
for 1 Ñ 10 (Figure 2.3-10) there will be 6 different non-symmetrical options
(2-18, 2-16, 2-12, 4-16, 4-12, and 8-12). Summing up all these numbers, we
get 5 + 8 + 9 + 8 + 5 + 5 + 8 + 6 = 54 variants with one red separatrix.

We now turn to the case with two red separatrices. Red saddles can
be 6 and 10 or 6 and 14 (the case of 10 and 14 is symmetrical to 6 and
10). In this case, the number of variants will be equal to the product of the
numbers of saddles lying in three parts into which two red sepraartris divide
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FiGURE 2.3. Optimal Morse-Smale flows on the Boy’s surface
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the diagram. For example, for 1 Ñ 6 and 1 Ñ 10 in one part there are two
saddles 2 and 4, in the other one 8, and in the third three (12, 16, 18). We
get, 2 ˆ 1 ˆ 3 = 6 options. Let us describe all possible variants with two
separatrices:

1) 3 Ñ 6, 3 Ñ 10 (see Figure 2.3-25) : 1 ˆ 1 ˆ 4 = 4

2) 3 Ñ 6, 1 Ñ 10 (see Figure 2.3-19) : 1 ˆ 2 ˆ 3 = 6

3) 3 Ñ 6, 17 Ñ 10 (see Figure 2.3-18) : 1 ˆ 3 ˆ 2 = 6

4) 3 Ñ 6, 14 Ñ 10 (see Figure 2.3-27) : 1 ˆ 4 ˆ 1 = 4

5) 1 Ñ 6, 1 Ñ 10 (see Figure 2.3-22) : 2 ˆ 1 ˆ 3 = 6

6) 1 Ñ 6, 17 Ñ 10 (see Figure 2.3-24) : 2 ˆ 2 ˆ 2 = 8

7) 1 Ñ 6, 14 Ñ 10 (see Figure 2.3-32) : 2 ˆ 3 ˆ 1 = 6

8) 17 Ñ 6, 17 Ñ 10 (see Figure 2.3-20) : 3 ˆ 1 ˆ 2 = 6

9) 17 Ñ 6, 14 Ñ 10 (see Figure 2.3-30) : 3 ˆ 2 ˆ 1 = 6

10) 14 Ñ 6, 14 Ñ 10 (see Figure 2.3-26) : 4 ˆ 1 ˆ 1 = 4

11) 3 Ñ 6, 3 Ñ 14 (see Figure 2.3-29) : 1 ˆ 2 ˆ 3 = 6

12) 3 Ñ 6, 1 Ñ 14 (see Figure 2.3-23) : 1 ˆ 3 ˆ 2 = 6

13) 3 Ñ 6, 17 Ñ 14 (see Figure 2.3-21) : 1 ˆ 2 ˆ 3 = 2

14) 3 Ñ 6, 10 Ñ 14 (see Figure 2.3-33) : 1 ˆ 4 ˆ 1 = 4

15) 1 Ñ 6, 1 Ñ 14 (see Figure 2.3-35) : 1 ˆ 2 ˆ 2 = 4

16) 1 Ñ 6, 10 Ñ 14 (see Figure 2.3-32) : 1 ˆ 2 ˆ 3 = 6

17) 17 Ñ 6, 10 Ñ 14 (see Figure 2.3-34) : 1 ˆ 2 ˆ 3 = 6

18) 10 Ñ 6, 10 Ñ 14 (see Figure 2.3-31) : 1 ˆ 2 ˆ 1 = 2

Summing up all the numbers we get 92 options.
Similarly, one can consider cases with three separatrices, and get the

following description:

1) 3 Ñ 6, 3 Ñ 10, 3 Ñ 14 (see Figure 2.3-13) : 1 ˆ 1 ˆ 1 ˆ 3 = 3

2) 3 Ñ 6, 3 Ñ 10, 1 Ñ 14 (see Figure 2.3-15) : 1 ˆ 1 ˆ 2 ˆ 2 = 4

3) 3 Ñ 6, 3 Ñ 10, 17 Ñ 14 (see Figure 2.3-16) : 1 ˆ 1 ˆ 3 ˆ 1 = 3

4) 3 Ñ 6, 1 Ñ 10, 1 Ñ 14 (see Figure 2.3-17) : 1 ˆ 1 ˆ 2 ˆ 2 = 4

5) 3 Ñ 6, 1 Ñ 10, 17 Ñ 14 (see Figure 2.3-12) : 1 ˆ 1 ˆ 3 = 3

6) 1 Ñ 6, 1 Ñ 10, 1 Ñ 14 (see Figure 2.3-14) : 1 ˆ 1 ˆ 3 = 3

Summing up all the numbers we get 20 options.
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By changing the direction of movement along closed trajectories, we ob-
tain the same numbers of topologically non-equivalent flows. In total, we
have 2 ˆ 2 = 4 flows with 8 separatrices and 2 ˆ (3 + 54 + 92 + 20) = 338
flows with 5 separatrices. □

3. PROjECTiVE MS-FLOW
In this section we consider Morse-Smale flows on the real projective plane,

which are flows projected on the Boy’s surface. PMS-flows have similar pro-
perties to MS-flow, but in addition PMS-flows are symmetric in the neigh-
borhoods of fixed point.

Hyperbolic singular points on the Boy’s surface must keep their type
when extended to the real projective plane. In other words, a sink point in
one of the strata of the Boy’s surface must still be a sink on the projective
plane, and the same holds for sources and saddles. This implies that PMS-
flows are central symmetric near singular points. As a consequence, the
only possible boundary orientation is a symmetric one, shown in Figure 2.2
left. In it, we have this identification of each point:

2 = 12, 6 = 14, 8 = 18,

1 = 9 = 11, 13 = 3 = 5, 7 = 15 = 17.

Points 4, 10 and 16 are either sink (for every 2-strata) or saddle (for every
2-strata), since these are inner points on the projective plane.

Of course, the boundary orientation in which all the potential sources
are potential sinks, and vice-verse, is also possible, but the results will be
similar.

Theorem 3.1. Each optimal PMS-flow on the projective plane has 3 sources,
5 saddles, and 3 sinks. There exist 80 = 2ˆ (1+9+30) optimal PMS-flows.
Proof. Figure 3.1 shows each step used in the process of counting all 40
PMS-flows. Again, the boundary orientation in which red points are green
points, and vice-versa, gives the other 40 PMS-flows, adding up to 80 in the
end.

The first portrait shows the case in which 4, 16 are saddles, and 10 is a
sink. This is the only possibility of green separatrices, up to symmetry, for
optimal PMS-flow.

When 4, 16 are sinks, and 10 saddle, there will necessarily be a saddle
(yellow point) inside the largest 2-stratum. This is represented in the second
and third portraits. The dashed red lines are the possible red separatrices.
We have 6 cases in the first portrait and 3 in the second, i.e. 9 cases.

The remaining portraits present the situation in which 4, 10, 16 are
sinks. There will be two saddles inside the largest 2-stratum. Counting all
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FiGURE 3.1. Optimal PMS-flows

the possibilities of red separatrices: 9+9+6+6 = 30. Notice that the two
last portraits have 3 symmetrically equal flows each.

Suppose a trajectory leaves the 0-stratum. Then, since the optimal pro-
jective flow is symmetric at fixed points, the 0-stratum is a source for all
angles in it. Each 1-stratum has one fixed point of the p-sink (potential
sink). Let us enumerate the corners as in Figure 2.2 left. Inside each 2-disk
the following two types of flow are possible: with a sink inside or with a
sink at the boundary (in the p-sink). The 0-stratum corresponds to three
points on the projective plane. Therefore, the flow will have at least three
sources. Since there must be a sink on each 2-disk, there are also at least
3 sinks.

Further we will show the existence of flows with three sources and three
sinks. Since the Euler characteristic of the projective plane is equal to 1 and
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is equal to the sum of the number of sources and sinks minus the number
of saddles, the optimal flow has three sources, three sinks and five saddles.
If all the sinks of the 2-disks are internal, then the central region must also
have a sink, and therefore such a flow will not be optimal.

Let only one disk have a sink at the boundary. For definiteness, assume
that its index is 10. Then a unique structure of such a flow is possible. In
this case, all green separatrices end at 10.

Next, consider the case of two sinks at the boundary. Assume that their
indexes are 4 and 16. For such flows there possible an axial symmetry
transforming 4 into 16. These points should be separated by red separatri-
ces. Since all red points on the border are sources, there is a saddle inside
the central region. The two separatrices that enter into that region start
at points that lay on opposite sides of points 4 and 16. Then one of them
is 1, 3, or 17, and the other is 5, 7, 9, 11, 13 or 15. If the first is 1, then
5, 7, 9 are symmetric to 15, 13, 11, respectively. In other words, there are
only three different structures of such flows. Since 3 is symmetric to 17, we
will consider only the options of separatrices starting at 3. For the second
separatrix, 6 options are possible, and thus we have 6 more flow structures.

Now we consider the case of three sinks at the boundaries of 2-disks,
that is, when points 4, 10, and 16 are sinks. In this case, there are two
saddles inside the central area. Their stable manifolds (red separatrices)
are separated by points 4, 10, and 16. There are 30 structures of such type.
To see this, we introduce the concept of saddle weight. The stable manifold
of the saddle splits the central region into two parts. The weight is equal
to the number of saddles +1 of the part in which there is one sink.

In view of the symmetries, we can assume that these regions for a pair
of saddles contain sinks 4 and 16 and the weight of the saddle adjacent to
the first region (with sink 4) is not greater than the weight of the second
saddle. Then the numbers of structures for distinct weights is given in the
following Table 3.1. In total we get 30 structures. □

weights number of weights number of weights number of
structures structures structures

1, 1 1 2, 2 3 3, 4 3
1, 2 2 2, 3 5 3, 5 1
1, 3 3 2, 4 3 4, 4 1
1, 4 2 2, 5 1
1, 5 1 3, 3 4

TABLE 3.1.
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CONCLUSiONS
It is known that there is a unique optimal Morse-Smale flow on the

projective plane and it has 3 fixed points: one source, one sink and one
saddle. We have shown that the condition that the flow is projected into
a flow on the Boy’s surface increases the number of fixed points to 11,
and the possible flows themselves to 80. If the Boy’s surface is considered
as a stratified set, then there are even more optimal flows, namely, 342.
But if we do not impose Morse-Smale conditions, then there are only 18
optimal flows. A remained interesting problem consists of describing of
all possible extensions of the constructed PMS-flows to optimal flows on a
three-dimensional sphere, as well as describing optimal flows for immersions
of other surfaces.
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